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The two-dimensional steady-state turbulent-diffusion equation is solved by a 
separation-of-variables process that leads to a Sturm-Liouville eigenvalue problem. 
The general solution, €or arbitrary velocity and diffusivity distributions, is shown to 
be in the form of an eigenfunction expansion. For a steady uniform flow in a wide, 
open channel the velocity distribution in the vertical is well approximated by a 
logarithmic law and the diffusivity distribution is approximately parabolic. For these 
distributions the power-series solution technique for ordinary differential equations 
is used to determine the eigenfunctions and eigenvalues. The solution is compared 
with the standard solution that Holley, Siemans & Abraham (1972) obtained for a 
uniform velocity and diffusivity distribution. Experimental results are presented, and 
these show that 

( 1 )  the use of the correct velocity and diffusivity distribution results in a significant 
improvement in the agreement between experiment and theory ; and 

(2) close to the source the fluctuations of concentration are of the order of the mean 
values. 

1. Introduction 
The dispersion of an instantaneous release of a slug of pollutant has received 

considerable attention and has been studied both theoretically and experimentally. 
Equally important is the dispersion of effluent from a continuous source, such as 
would occur from a factory outfall. Such a source may be treated as steady provided 
that any changes with time are small over the period of time an average particle takes 
to travel downstream from the source to the uniformly mixed region. 

In order to solve this problem for vertical dispersion Holley, Siemans & Abraham 
(1972), Fischer et al. (1979) and others have made the assumption that longitudinal 
concentration gradients are small compared with vertical concentration gradients, 
and this has enabled analytic solutions to be obtained for a uniform velocity and 
diffusivity distribution (Holley et al. 1972) and for a power-law velocity and 
diffusivity distribution (Yeh & Tsai 1976). The measured velocity distribution, 
however, is, except near the bed, approximately logarithmic, and this implies a 
parabolic distribution of diffusivity. No analytic solution is available for these 
distributions. McNulty & Wood (1984) approached this problem by adapting Aris’ 
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method of moments to a continuous release, and were able to  generate the required 
solution far from the source. Coudert (1970), on the other hand, solved the problem 
numerically by using a Crank-Nicholson finite-difference scheme. However, his final 
results are inconsistent with his stated boundary conditions. 

In  this paper the dispersion equation is reduced to an eigenvalue problem, following 
the approach used by Smith (1982), and a general form of the solution, for any choice 
of velocity and diffusivity distributions, is given in $3. I n  $4 the eigenfunctions and 
eigenvalues for a logarithmic velocity and parabolic diffusivity are derived by 
employing the power-series method of solution for ordinary differential equations. 
Details of the numerical calculations are included in $5  together with the numerical 
results. Concentration contours for constant velocity and diffusivity distributions are 
compared with those for a logarithmic velocity and parabolic diffusivity distributions. 
Some experimental results are presented in $6. 

2. Development of the equations 

buoyant substance in steady flow is generally modelled by the equation 
The process of two-dimensional turbulent diffusion of a conservative neutrally 

where the flow is taken to  be in the positive x-direction and y is measured vertically 
from the bed. ez and ey are the turbulent diffusion coefficients in the x- and y-directions 
respectively, u is the x-component of the mean velocity and c is the mean concentration 
of the dispersing material. The Fickian form of ( I )  comes from the assumption that 
the turbulent transport terms are proportional to the mean concentration gradients. 
This form is particularly convenient for a two-dimensional flow, since the distribution 
of eg can be determined from the hydraulic properties and the Reynolds analogy. 

For the flow in a long wide uniform channel the flow depth yn and all the mean 
flow variables (cz, cy and u) will not be functions of x. 

To obtain a particular solution to (l) ,  boundary conditions must also be specified. 
The boundary conditions require no vertical flux of material across the bed and free 
surface and a certain concentration configuration, source condition, specified a t  some 
section in the flow. These conditions may be stated as 

and c(0, Y) = CdY) .  

Provided that the longitudinal concentration gradients 
with the vertical gradients, as demonstrated by McNulty & 
to 

(3) 

are negligible compared 
Wood (1984), (1) reduces 

Choosing the variables 

(5) 

(4) may be non-dimensionalized. ti is the depth-averaged velocity, D = ui  yn/ti, is the 
diffusivity coefficient u* = (70/p)4 is the shear velocity, 70 is the bed shear stress and 

x r x  =- yr = - > u = ux(y’), ey = Ds1.(y’), 
Yn YII 
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pis the fluid density. ~ ( y ’ )  is a non-dimensional velocity and k (y ’ )  is a non-dimensional 
diffusivity, which, if Reynolds’ analogy with the linear shear stress for uniform flow 
in a wide channel is used, becomes 

If these transformations are applied to  (4) and the primes are dropped for clarity, 
the governing equation becomes 

where f = ~ ( U , / U ) ~  and the variables x and y are understood to  be dimensionless. 
Equation (2) becomes 

ac 
fi(y)- = 0 at y = 0 , l .  (8) 

aY 

3. Transformation to a Sturm-Liouville eigenvalue problem 

assuming a separated solution of the form 
Equation (4) may be transformed to two ordinary differential equations by 

c(x ,  Y )  = G(x)  m y ) .  

The functions G(x)  and H ( y )  satisfy the equations 

( 9 )  

where y is the constant of separation. Equation (10) has the solution 

G(x)  = A exp [ - &fFI 3 (12) 

where A is some arbitrary constant, while ( l l ) ,  together with the separated form 
of (8), 

w 
dY 

$ - - = O  a t  y = O , 1 ,  

constitute an eigenvalue problem governed by Sturm-Liouville theory. With some 
minor modification, standard proofs (Ince 1927) can be used to demonstrate that  the 
eigenvalues of this problem are real, discrete and non-degenerate and that the 
eigenfunctions are mutually orthogonal with respect to the weighting function x ( y )  
over the interval 0 < y < 1. The eigenfunctions are also assumed to  form a complete 
set, thus allowing any well-behaved (at least piecewise-continuous) function in the 
interval 0 < y < 1 to be expressed as an infinite series of the eigenfunctions. 

The general solution of (7)  is given by 

C ( X >  Y) = c a y  exp - W X I  Hy(Y)  > (14) 
Y 

with the sum taken over all possible values of y satisfying (11) and (13). Only 
non-negative values of y will be physically acceptable, with y = 0, the smallest 
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eigenvalue, corresponding to the equilibrium condition when the pollutant is 
uniformly mixed throughout the flow. The eigenvalues may thus be placed in order 
of increasing magnitude, and (14) may be written 

The expansion constants at are determined by the source condition (3) a t  x = 0. 
By virtue of the orthogonality condition 

j: C A Y )  X(Y) H,(Y) dY 

j: X(Y) H3Y 1 dY 
a, = (i = 0, 1, ...) 00). (16) 

Setting H,(y) = 1 and making use of the definition of ~ ( y ) ,  the expression for a, 

1 reduces to 

a0 = j, C d Y )  X(Y) dY, (17) 

which is equivalent to the expression for the equilibrium concentration c,, given by 
McNulty & Wood (1984). A dimensionless concentration may be defined as 

c* = cia,, (18) 

and all numerical and experimental results presented in $55 and 6 will be displayed 
in this non-dimensional form. 

Equations (15) and (16) represent a complete formal solution to the steady 
two-dimensional dispersion problem of a continuous pollutant release. The final task 
is to determine the eigenvalues and eigenfunctions for a particular choice of 
diffusivity and velocity. This will be done in $4. 

4. Power-series solution for calculation of the eigenfunctions and 
eigenvalues 

The eigenfunctions and eigenvalues of (1 1 )  and (13) depend on the choice of velocity 
and diffusivity distributions. By making the approximation that ~ ( y )  and $(y) are 
constants, (11)  and (13) yield the standard analytic solution where the eigenvalues 
are given by 

y, = $m2n2 (m = 0,1,  ..., co), (19) 

in which $ is the depth-averaged diffusivity, and eigenfunctions are given by 

H ,  = cos(mny) (m = 0, 1, ..., co). (20) 

The expressions for the expansion coefficients a,  given in (16) are then the standard 
Fourier-series expressions. 

In general, an analytic solution to equation (12) is not readily available. This is 
certainly true for the case of a logarithmic velocity distribution and the corresponding 
parabolic diffusivity distribution derived from (6). For this case 

(21) X(Y) = 1 + 4 1  +lny), 

where h = u*/UK, K is von KBrmBn’s constant and 

1 
*(Y) = (1  -Y) Y. (22) 
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A number of techniques are available for the solution of boundary-value problems 
of this type. These include finite-difference methods, expansions using a basis set of 
complete functions, and variational methods. The procedure employed in this paper 
is a power-series expansion (Boyce & DiPrima 1969), chosen for its ease of use. 

By changing the independent variable to z = 1 - y, so z measures downwards from 
the free surface, (1  1 )  becomes 

d2H dH 
dz2 dz 

z( 1 - z )  - + ( 1 - 22) ~ + yA[ 1 + A( 1 + In ( 1 - z )  )] H = 0. 

All of the coefficients of (23) are polynomials in z or functions that may be expanded 
as polynomials in z ,  i.e. 

and hence a power series in z may be employed to represent the eigenfunction H .  The 
point z = 0 is a regular singular point, and so the two linearly independent solutions 

are given by 00 

H,(z) = b,zn (25) 
n - 0  

and 
m 

H,(z) = H,(z)lnz+ Z c,zn, 
n--1 

where the coefficients b, and c, are found by direct substitution into (23). The second 
of these solutions does not satisfy the boundary condition at the free surface, and 
so may be discarded. 

A set of recurrence relations, relating each coefficient b ,  to those before it, may 
be obtained by substituting H,(z) into (23). These relationships are 

b, = -eb,, (27) 

b, = 0.25[(2-0)b,+$b0], (28) 

11 bk+l = -[(k'+k-B)b,+(b 1 (k+ 1)2 (; k L l  
O+-- l_+ . . .+bk- - l  (k: = 2, ... ) co) (29) 

where $ = yA2, 8 = yA(1 + A ) ,  and b, is arbitrary so it may be set equal to unity. An 
expression, albeit an infinite power series, is now available for the eigenfunction H ( y )  
as a function of the eigenvalue y .  

As the diffusivity ~ ( y )  vanishes on the boundaries, it is not convenient to use (13) 
directly to determine the eigenvalues. Instead, the integrated form of (11) incor- 
porating the boundary conditions, 

J; X ( Y )  H(Y) dy = 0, (30) 

yields a characteristic equation from which the eigenvalues may be evaluated. 
Although the explicit y-dependence of (30) is not readily obtained, an iterative 
process suffices to generate the eigenvalues. 

The theory of power-series solutions to ordinary differential equations guarantees 
that the series will converge in the interval 0 < z < 1, but not necessarily at z = 1. 

This method for obtaining the eigenfunctions and eigenvalues may be applied to 
any well-behaved diffusivity and velocity distribution. The point in the flow about 
which the expansion should be made will depend on the form of the diffusivity and 
velocity. 
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Equation (15) may now be written as 
a: n 

c(x,y) = Z aiexp(  -%&) Z bnizn ,  
i = O  n = o  

where the bni and yi are known and the boundary condition a t  x = 0 determines the 
coefficients ai. 

5. Numerical results 
Two computer programs were developed to calculate the eigenvalues and concen- 

tration distributions for a range of velocity and diffusivity distributions. A friction 
factor of 0.08, chosen to  be representative of the experimental data presented in $6, 
was used for all numerical calculations in this section, while von Karman’s constant 
was taken as 0.35. All computer calculations were performed on a Burroughs 6900 
computer. 

The initial task of generating the eigenvalues was achieved with the use of the 
eigenfunction solution described in $4 and (30). Equation (30) represents a function 
of the parameter y that  possesses an infinite number of discrete positive real roots, 
and a simple regular false algorithm was employed to  obtain the eigenvalues by 
iteration. This root-finding method was found to  be quite satisfactory for this 
purpose, and, provided that not too large an interval was chosen to contain the 
eigenvalue, 5-decimal-place accuracy was achieved with less than 8 iterations. 
Double-precision accuracy was used for all calculations in the program designed to  
generate the eigenvalues. 

The results of this program were easily checked by generating the eigenvalues for 
problems with known analytic solutions. Two such problems were considered : that  
for a uniform velocity and uniform diffusivity and that for a uniform velocity and 
parabolic diffusivity. The eigenfunctions for these distributions are cosine functions, 
as stated in 94, and Legendre polynomials respectively. I n  each case 70 terms were 
used in the power series, and eigenvalues correct to  5 decimal places were obtained 
for the first seven eigenvalues. To obtain further eigenvalues accurately for the case 
of uniform velocity and uniform diffusivity more terms in the power series were 
required. The time required to generate the first 7 eigenvalues for these two cases 
was typically 3 s. As the eigenfunctions for the second case are finite-degree 
polynomials, it  is not surprising that the power-series solution is efficient and 
accurate. 

Eigenvalues for a logarithmic velocity and parabolic diffusivity were also generated. 
Owing to the singularity in the velocity, the convergence of the eigenvalues is unlikely 
to be as rapid as for the two cases considered above. The first 5 eigenvalues calculated 
using 20, 50, 100, 150 and 200 terms in the series expansion are presented in table 1 .  
To strike a balance between accuracy and efficiency, i t  was decided to  use 70 terms 
to  determine the eigenvalues and eigenfunctions employed in the calculation of the 
concentration distribution. Although the accuracy of the larger eigenvalues will suffer 
somewhat by this choice, it was felt that, as these higher-order eigenfunctions decay 
rapidly as one moves downstream from the source, this sacrifice of accuracy would 
not be important except very near the origin. 

To enable some comparisons to be made a shooting-method solution was also 
developed. This technique was found to  be considerably less efficient than the 
power-series method presented here, although as i t  was not refined to any great extent 
a comparison between the efficiencies of the procedures would be unfair. However, 
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Terms Y1 Yz Ya Y4 Y5 

20 7.79986 24.03313 48.70618 81.82070 123.42593 
50 7.80148 24.05366 48.79930 82.07270 123.88065 

100 7.801 35 24.05 196 48.79 155 82.05074 123.83420 
150 7.80127 24.05100 48.78717 82.03829 123.80758 
200 7.80123 24.05053 48.78501 82.03216 123.79443 

TABLE 1 

Normalized If,@) 

FIGURE 1.  The firat three normalized eigenfunctions for a logarithmic velocity and parabolic 
diffusivity withf = 0.08 and K = 0.35. The solid lines were obtained using 40 terms in the power-series 
approximation. The dashed lines were obtained using 100 terms in the power-series approximation. 

this numerical scheme did confirm the correctness of the eigenvalues generated with 
the series solution. 

The first 3 normalized eigenfunctions for a logarithmic velocity and parabolic 
diffusivity are plotted in figure 1. As stated in 54 the power-series representations 
of these functions are guaranteed to converge in the open interval 0 < y < 1. The 
number of terms required to obtain an accurate approximation to the functions will 
increase near the lower end of the interval, and thus a region near the lower boundary 
will contain the maximum error in the power-series representation. The solid line in 
figure 1 was evaluated using 40 terms in the series expansion, and the dashed line 
using 100 terms. This region of error can be seen to be confined to the bottom 3 or 
4% of the flow. 

Figure 2 represents the concentration contours downstream of a rectangular source 
of width 0.01 centred at y = 0.75 in a flow with a logarithmic velocity profile and 
parabolic diffusivity profile. On the same diagram the concentration contours for the 
same source but with a power-law velocity (u/u,,, = (y/y,)'/") and the same 
parabolic diffusivity are shown by the dashed lines. The choice of n = 3.29 was made 
by performing a least-squares power-law fit to the logarithmic velocity distribution 
above y = 0.1. As expected, the two sets of contours are almost indistinguishable. 
The consequence of this result is that the power-law velocity and logarithmic velocity 
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Non-dimensional distance 

FIGURE 2. The concentration contours downstream from a source at 0.75 above the bed. For this 
calculation the friction factor was 0.08. The solid lines are for a logarithmic velocity ( K  = 0.35 from 
measured velocities) and a parabolic diffusivity. The dashed lines are for a power-law velocity 
(n = 3.29 see text) and the same parabolic diffusivity. 

Non-dimensional distance 

FIGURE 3. The concentration contours downstream from a source at 0.75 above the bed. For this 
calculation the friction factor was 0.08, the velocity and diffusivity were assumed uniform with 
the same average value as used in figure 2. 

may be confidently interchanged in dispersion calculations provided that the 
parabolic diffusivity distribution is retained. The power law is advantageous in 
that it is physically reasonable over the whole flow region and well behaved at  the 
channel bed. 

The results for uniform velocity and uniform diffusivity profiles are presented in 
figure 3. The depth-averaged velocity and diffusivity are the same for figures 2 and 3. 

A comparison of these two figures reveals the downstream distance where mixing 
is 99% complete is predicted to be substantially larger in the flow with uniform 
velocity and uniform diffusivity. This result, reflected by the first eigenvalues in each 
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Velocity Diffueivity First eigenvalue 

logarithmic parabolic 7.8014 
power parabolic 7.5652 

logarithmic uniform 6.3770 
uniform uniform 5.7573 

uniform parabolic 7 . m  

TABLE 2 

solution, does depend on the source position, although the reduction in mixing 
distance predicted by the logarithmic (or power) velocity and parabolic diffusivity 
is typical of most positions of the release. Table 2 lists the first eigenvalue for various 
velocity and diffusivity profiles, and allows a comparison between the various 
approximations to be made. These results suggest that an accurate knowledge of the 
diffusivity is of greater importance than a knowledge of the velocity in predicting 
the distance to almost complete mixing. It would be useful to apply this method to 
wide rivers where the pollutant is well mixed vertically but is spreading horizontally 
(Smith 1982). However, for this case the importance of the diffusivity distribution 
is unfortunate, since although it is a relatively easy matter to measure the velocity 
distribution there is no simple way of determining the diffusivity distribution. 

It is possible to find an ideal position for the source which yields a minimum mixing 
distance. This source position corresponds to the depth where the first eigenfunction 
vanishes, thus leaving the second eigenfunction to dominate far downstream from 
the source. As Smith (1982) explains, this source position ensures that the pollutant 
concentration at the flow boundaries never exceeds the fully mixed concentration. 
Physically the concentration maximum in the dispersing plume is forced to regions 
of lower diffusivity and lower velocity, and thus the ideal source position corresponds 
to the depth where the effect of the velocity shear trying to drag the plume to the 
bed is exactly balanced by the diffusivity gradient attempting to raise the plume to 
the surface. The result is that the plume concentration maximum travels horizontally 
in the flow, never reaching the bed or the free surface. This source position is located 
at approximately y = 0.6 for the logarithmic velocity and parabolic diffusivity. 

To facilitate a source at  the bed of the flow where the logarithmic velocity is 
negative, a linear velocity distribution was fitted to the logarithmic velocity. The 
point of overlap for the two distributions, y = e-lIA, was chosen so that the velocities 
and their gradients were the same. This linear velocity was used together with the 
eigenfunctions calculated from the logarithmic velocity to evaluate the numerator 
of (16) and hence the expansion coefficients uj. Using this linear velocity was not an 
attempt to include a viscous sublayer at the bed. 

6. Experiments 
To obtain an approximately two-dimensional flow, a wide (560 mm), shallow 

(150 mm) and long (15 m) laboratory flume was modified by placing 20 mm by 7 mm 
‘roughness’ strips on the base of the flume. Roughness strips were spaced at 20 mm, 
creating cavities over 50 yo of the bed, perpendicular to the flow direction. This had 
the effect of destroying the secondary flow and ensuring an approximately two- 
dimensional flow. However, the extreme roughness dominates close to the bed, and 
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experimental velocities 

log velocity (K = 0.35) 
(mean velocity = 0.550 m/s) 

40 t 
1 

0 

-7 
=+ 7 m  

depressed origin for velocity profile -_--  
. .  . . . . .  . .  

.:.. . .  '.: '..: smeared Eddy 

FIQURE 4. The smearing of the bed forms and stationary eddy is shown, together with a typical 
velocity profile. The depressed origin of the logarithmic velocity is also demonstrated. 

therefore the experimental results presented are only for those cases where this region 
is small relative to  the total depth. 

A tracer of salt (NaC1) solution was injected into the flume as a continuous line 
source on either the surface, or the bottom, of the flow. After an initial unsteady 
period, measurements could be taken at various depths and distances from the source 
to  produce a description of the dispersion pattern. Data was passed from con- 
ductivity probes via a salinity meter and data-acquisition system to a PDPll /34 
computer for storage and future analysis. The conductivity probes consisted of a 
hollow 6 mm stainless-steel tube with two platinum electrodes glued into its end. 
The electrodes were 3.2 mm long, 0.5 mm in diameter and spaced 1.6 mm apart. 
The probes were placed a t  an  angle of 25' facing into the flow. Sufficient data were 
collected to  enable an analysis of the turbulent concentration fluctuations and to  
produce an average non-dimensional concentration at each measurement point. 

Measured concentrations were non-dimensionalized by subtracting the background 
concentration and dividing by the fully mixed concentration, both of which were 
measured during an experimental run. Provided that the probes respond linearly, this 
technique eliminates the possibility of probe-calibration errors. 

Flow parameters (velocities, flow depths, etc.) required by the model were recorded 
separately for each experimental run. Average velocity profiles were measured across 
and along the laboratory flume with an 8 m m  Pitot tube and a Kent Mini-flow 
impellor-type meter. The velocity profile shown in figure 4 is typical of the 
measurements made over the central two-thirds of the flume. The rectangular 
roughnesses are also shown with this profile. I n  each cavity a stationary eddy was 
observed and the approximate geometry of the eddy was recorded. The origin for the 
velocity distribution law was predicted using the results of previous investigators 
(Antonia & Wood 1975; Aytekin & Berger 1979) as applied to longitudinally averaged 
bed conditions. That is, the roughness element and eddy areas were smeared to obtain 
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rofile height 18.50 (t 2 mm) 2.5 

2.0 
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Profile height 23.50 (+ 2 mm) 

.* * - Non-dimensional distance x / y ,  - 
Profile height 4 1 .OO (t 2 mm) Profile height 28.50 (+ 2 mm) Profile height 56.00 (+ 2 mm) 
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1 

0 - Non-dimensional distance x/y ,  - 
FIGURE 5. A comparison of the concentration distributions of particular depths for: III], predictions 
made with the logarithmic velocity profile and the parabolic diffusivity; Q, predictions made using 
a uniform velocity and diffusivity (with the same average values as for the first case); 0 ,  the 
experimental points. The source was at the bottom of the flow, the friction factorf was 0.072 and 
the flow depth was 75.6 mm. 

Profile height 13.50 (* 2 mm) Profile height 23.50 (* 2 mm) 9 
1 

.d I-' 
' 
E 

20 40 60 80 
c 

5 
2 A Profile height 33.50 (+ 2 mm) A Profile height 43.50 (* 2 mm) 

o' ' 2b ' i o  ' Qo ' sb- 
Non-dimensional distance x / y ,  

FIGURE 6. A comparison of the concentration distributions of particular depths for: m, predictions 
made with the logarithmic velocity profile and the parabolic diffusivity ; 61, predictions made using 
a uniform velocity and diffusivity (with the same average values as for the first case); 0 ,  the 
experimental points. The source was a t  the bottom of the flow, the friction factor f was 0.087 and 
the flow depth was 60.2 mm. 

6-2 
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1 .o V 
/ 

0.50 

XlY, 

FIQURE 7. A plot of standard deviation of the concentration contours (solid lines) and the mean 
concentration contours (dashed lines) for a source at the bed. The velocity is logarithmic and the 
diffusivity parabolic. In this case the friction factor was f = 0.072 and the flow depth was 75.6 mm. 

an average depth. The origin was then taken as 0.25 of the spread eddy depth below 
the top of the spread eddy. This process is shown in figure 4. The best logarithmic 
fit to all experimental velocity data defined in this manner was obtained with K =0.35. 

Experimental concentration values, having been calibrated by equilibrium 
and background concentrations, are plotted on the figures of theoretical curves 
(figures 5 and 6). The two shaded regions shown in each plot correspond to theoretical 
concentration profiles for a logarithmic velocity distribution and a uniform velocity 
distribution. The bounds of each region are given by profiles a t  2 mm either side of 
the measured probe height, representing the accuracy to which the probe height may 
be determined. Errors in locating the probes arise from fluctuations in the bed 
position ( f 1 mm), measurement of the probe height (k0.5 mm) and fluctuations of 
the water surface ( & 1 mm). 

As can readily be seen from figures 5 and 6, the logarithmic-velocity/parabolic- 
diffusivity yields better predictions than the uniform-velocity/uniform-diffusivity 
distribution. 

Finally, the salinity data recorded was analysed for the standard deviation of the 
concentration fluctuations. Since the probes average over an area, the absolute value 
of the results depends on the size and orientation of the probes. The results, presented 
in figure 7, must therefore be considered as qualitative only. They do, however, show 
that close to the source the fluctuations are of the same order as the mean 
concentration. 
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